Los Beta glucanos de levadura son usados comúnmente en Europa y Estados Unidos como suplementos para reforzar las defensas.

 

En NUPROMIC estamos comprometidos con usar ingredientes que estén avalados por la comunidad científica como ingredientes funcionales, seguros, y con beneficios para la salud probados. Es por eso que nos hemos dado a la tarea de recopilar y analizar los artículos científicos más significativos que respalden la eficacia de nuestros productos. Aquí le presentamos más información sobre nuestro ingrediente inmuno-estimulante Beta glucano. 

Mecanismo de Acción

 

Beta glucano funciona al activar células inmunitarias inertes llamadas neutrófilos. Estas son células blancas que se encuentran en la sangre y que componen alrededor de un 70% de los leucocitos. Una vez activadas, su periodo de vida es corto, midiéndose en horas. La principal función de estas células es defender al cuerpo de organismos externos, actuando como su primera línea de defensa. Debido a que el tiempo medio de vida de estas células es corto, se recomienda ingerir Beta glucano continuamente para que su efecto sea constante. Una vez que los neutrófilos son activados, pueden empezar inmediatamente a realizar su actividad normal de protección al cuerpo de amenazas externas.

 

Al ser Beta glucano un ingrediente orgánico, no sintético, y con un mecanismo de acción antígeno ampliamente estudiado, encontramos que este ingrediente no causa sobre estimulación del sistema inmune, y por lo tanto no presenta problemas por sobre dosis.


Beneficios para la salud 

Entre los beneficios que ofrece Beta glucano podemos resaltar:

  • Fortalecimiento constante del sistema inmune
  • Equilibrio en salud física y mental
  • Niveles de energía estables
  • Refuerzo contra stress
  • Incremento de defensas post-ejercicio
     

En una encuesta a 28,451 consumidores de 20 países se encontró que el cuidado al sistema inmune es la segunda cualidad más deseada en un alimento o bebida funcional, superando a salud digestiva y salud cardiaca y solo debajo de salud y bienestar en general.  

Datamonitor, 2015


Aprobaciones

US. Food and Drug Administration (FDA) aprobación de Beta Glucano de levadura como un producto GRAS (Generally Recognised as Safe)
Agency Response Letter GRAS Notice No. GRN 000239

 

Artículos cientificos

[1] Thompson, I. J., Oyston, P. C. F., Williamson, D. E., Potential of the β-glucans to enhance innate resistance to biological agents. Exp. Rev. Anti-Inf. Ther. 2010, 8, 339–352.

[2] Barsanti, L., Passarelli, V., Evangelista, V., Frassanito, A. M. et al., Chemistry, physico-chemistry and applications linked to biological activities of [β]-glucans. Nat. Prod. Report. 2011, 28, 457–466.

[3] Stone, B. A., Cellulose and callose: evolutionary considerations. Abstr. Papers Am. Chem. Soc. 2004, 227, U289–U289.

[4] Valluri, J. V., Soltes, E. J., Callose formation during wound-inoculated reaction of Pinus elliottii to Fusarium-subglutinans. Phytochemistry 1990, 29, 71–72.

[5] Legras, J. L., Merdinoglu, D., Cornuet, J. M., Karst, F., Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 2007, 16, 2091–2102.

[6] EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the safety of “yeast beta-glucans” as a novel food ingredient. EFSA J. 2011, 9, 2137.

[7] Von Dungern, E. F., Beiträge zur Immunitätslehr. Münch. Med. Wochenschr. 1900, 47, 677–680.

[8] Pillemer, L., Ecker, E. E., Anticomplementary factor in fresh yeast. J. Biol. Chem. 1941, 137, 139–142.

[9] Di Carlo, F. J., Fiore, J. V., On the composition of Zymosan. Science 1958, 127, 756–757.

[10] Brown, G. D., Gordon, S., Immune recognition – A new receptor for beta-glucans. Nature 2001, 413, 36–37.

[11] Xia, Y., Vetvicka, V., Yan, J., Hanikyrová, M. et al., The β-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J. Immunol. 1999, 162, 2281–2290.

[12] Sze, D. M. Y., Chan, G. C. F., Effects of beta-glucans on different immune cell populations and cancers. Adv. Bot. Res. 2012, 62, 179–196.

[13] Novak, M., Vetvicka, V., Beta-glucans, history, and the present: immunomodulatory aspects and mechanisms of action. J. Immunotoxicol. 2008, 5, 47–57.

[14] Manners, D. J., Masson, A. J., Patterso, J. C., Structure of beta-(1–3)-D-glucan from yeast cell walls. Biochem. J. 1973, 135, 19–30.

[15] Rieder, A., Samuelsen, A. B. C., Do cereal mixed-linked beta-glucans possess immune-modulating activities? Mol. Nutr. Food Res. 2012, 56, 536–547.

[16] Kollar, R., Reinhold, B. B., Petrakova, E., Yeh, H. J. C. et al., Architecture of the yeast cell wall – beta(1->6)-glucan interconnects mannoprotein, beta(1–3)-glucan, and chitin. J. Biol. Chem. 1997, 272, 17762–17775.

[17] Ohno, N., in: Kamerling, J.P. (Ed.), Yeast and Fungal Polysaccaharides, Analysis of Glycans Polysaccharide Functional Properties, Comprehensive Glycoscience, Vol. 2, Elsevier, Oxford 2007, pp. 559–577.

[18] Ha, C. H., Lim, K. H., Kim, Y. T., Lim, S. T. et al., Analysis of alkali-soluble glucan produced by Saccharomyces cerevisiae wild-type and mutants. Appl. Microbiol. Biotechnol. 2002, 58, 370–377.

[19] Aimanianda, V., Clavaud, C., Simenel, C., Fontaine, T. et al., Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae. Structural characterization and in situ synthesis. J. Biol. Chem. 2009, 284, 13401–13412.

[20] Yu, L. P., Goldman, R., Sullivan, P., Walker, G. F. et al., Heteronuclear NMR-studies of C-13-labeled yeast-cell wall beta-glucan oligosaccharides. J. Biomol. NMR 1993, 3, 429–441.

[21] Lesage, G., Bussey, H., Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2006, 70, 317–343.

[22] Jamas, S., Chen, Y. C. J., Vonderosten, C. H., Sinskey, A. J. et al., Spectral-analysis of glucan produced by wild-type and mutant Saccharomyces cerevisiae. Carbohyd. Polym. 1990, 13, 207–219.

[23] Jamas, S., Rha, C. K., Sinskey, A. J., Glucan composition and process for preparation thereof. 1992, US Patent 5.082,936.

[24] Rieder, A., Grimmer, S., L, Aachmann, F. L., Westereng, B. et al., Generic tools to assess genuine carbohydrate specific effects on in vitro immune modulation exemplified by β-glucans. Carbohyd. Poly. 2013, 92, 2075–2083.

[25] Smythies, L. E., Sellers, M., Clements, R. H., Mosteller-Barnum, M. et al., Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 2005, 115, 66–75.

[26] Parham, P., The Immune System, Garland Science, Taylor & Francis Group, New York 2009.

[27] Falch, B. H., Espevik, T., Ryan, L., Stokke, B. T., The cytokine stimulating activity of (1 -> 3)-beta-D-glucans is dependent on the triple helix conformation. Carbohyd. Res. 2000, 329, 587–596.

[28] Gawronski, M., Park, J. T., Magee, A. S., Conrad, H., Microfibrillar structure of PGG-glucan in aqueous solution as triple-helix aggregates by small angle X-ray scattering. Biopolymers 1999, 50, 569–578.

[29] Talbott, S., Talbott, J., Effect of beta 1, 3/1, 6 glucan on upper respiratory tract infection symptoms and mood state in marathon athletes. J. Sport Sci. Med. 2009, 8, 509–515.

[30] Talbott, S., Talbott, J., Beta 1,3/1,6 glucan decreases upper respiratory tract infection symptoms and improves psychological well-being in moderate to highly-stressed subjects. Agro Food Ind. Hi. Tec. 2010, 21, 21–24.

[31] Feldman, S., Schwartz, H. I., Kalman, D. S., Mayers, A. et al., Randomized phase II clinical trials of Wellmune WGP(R) for immune support during cold and flu season. J. Appl. Res. 2009, 9, 30–42.

[32] Fuller, R., Butt, H., Noakes, P. S., Kenyon, J. et al., Influence of yeast-derived 1,3/1,6 glucopolysaccharide on circulating cytokines and chemokines with respect to upper respiratory tract infections. Nutrition 2012, 28, 665–669.

[33] Graubaum, H.-J., Busch, R., Stier, H., Gruenwald, J., A double-blind, randomized, placeob-controlled nutritional study using an insoluble yeast beta-glucan to improve the immune defense system. Food Nutr. Sci. 2012, 3, 738–746.

[34] Auinger, A., Riede, L., Bothe, G., Busch, R. et al., Yeast (1,3)-(1,6)-beta-glucan helps to maintain the body's defence against pathogens: a double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. Eur. J. Nutr. 2013, doi: 10.1007/s00394-013-0492-z.

[35] Gleeson, M., Bishop, N., Oliveira, M., McCauley, T. et al., Respiratory infection risk in athletes: association with antigen-stimulated IL-10 production and salivary IgA secretion. Scand. J. Med. Sci. Sports 2012, 22, 410–417.

[36] Mortatti, A. L., Moreira, A., Aoki, M. S., Crewther, B. T. et al., Effect of competition on salivary cortisol, immunoglobulin A, and upper respiratory tract infections in elite young soccer players. J. Strength Cond. Res. 2012, 26, 1396–1401.

[37] Nieman, D. C., Henson, D. A., Dumke, C. L., Lind, R. H. et al., Relationship between salivary IgA secretion and upper respiratory tract infection following a 160-km race. J. Sports Med. Phys. Fitness 2006, 46, 158–162.

[38] Phillips, A. C., Carroll, D., Evans, P., Bosch, J. A. et al., Stressful life events are associated with low secretion rates of immunoglobulin A in saliva in the middle aged and elderly. Brain Behav. Immun. 2006, 20, 191–197.

[39] Lehne, G., Haneberg, B., Gaustad, P., Johansen, P. W. et al., Oral administration of a new soluble branched β-1,3-D-gluccan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers. Clin. Exp. Immunol. 2005, 143, 65–69.

[40] Weiszcarrington, P., Grimes, S. R., Lamm, M. E., Gut-associated lymphoid tissue as source of an IgA immune response in respiratory tissues after oral immunization and intrabronchial challenge. Cell. Immunol. 1987, 106, 132–138.

[41] Czerkinsky, C., Svennerholm, A. M., Quiding, M., Jonsson, R. et al., Antibody-producing cells in peripheral blood and salivary glands after oral cholera vaccination of humans. Infect. Immun. 1991, 59, 996–1001.

[42] Kohl, A., Gogebakan, O., Mohlig, M., Osterhoff, M. et al., Increased interleukin-10 but unchanged insulin sensitivity after 4 weeks of (1,3)(1,6)-beta-glycan consumption in overweight humans. Nutr. Res. 2009, 29, 248–254.

[43] Aarsaether, E., Rydningen, M., Einar Engstad, R., Busund, R., Cardioprotective effect of pretreatment with beta-glucan in coronary artery bypass grafting. Scand. Cardiovasc. J. 2006, 40, 298–304.

[44] Kirmaz, C., Bayrak, P., Yilmaz, O., Yuksel, H., Effects of glucan treatment on the Th1/Th2 balance in patients with allergic rhinitis: a double-blind placebo-controlled study. Eur. Cyto. Network 2005, 16, 128–134.

[45] Demir, G., Klein, H. O., Mandel-Molinas, N., Tuzuner, N., Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. Int. Immunopharmacol. 2007, 7, 113–116.

[46] Ueno, H., Beta-1,3-D-glucan, its immune effect and its clinical use. Jap. J. Soc. Term. Syst. Dis. 2000, 6, 151–154.

[47] Torello, C. O., de Souza Queiroz, J., Oliveira, S. C., Queiroz, M. L., Immunohematopoietic modulation by oral beta-1,3-glucan in mice infected with Listeria monocytogenes. Int. Immunopharmacol. 2010, 10, 1573–1579.

[48] Vetvicka, V., Terayama, K., Mandeville, R., Brousseau, P. et al., Pilot study: orally-administered yeast β1,3-glucan prophylactically protects against anthrax infection and cancer in mice. JANA 2002, 5, 5–9.

[49] Sandvik, A., Wang, Y. Y., Morton, H. C., Aasen, A. O. et al., Oral and systemic administration of beta-glucan protects against lipopolysaccharide-induced shock and organ injury in rats. Clin. Exp. Immunol. 2007, 148, 168–177.

[50] Zhu, W., Gu, B. B., Miao, J. F., Lu, J. Y. et al., Dectin1 activation of beta-(1-3)/(1-6)-D-glucan produces an anti-mastitis effect in rats. Inflamm. Res. 2011, 60, 937–945.

[51] Tsukada, C., Yokoyama, H., Miyaji, C., Ishimoto, Y. et al., Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of beta-glucan. Cell. Immunol. 2003, 221, 1–5.

[52] Stuyven, E., Van den Broeck, W., Nauwynck, H., Goddeeris, B. M. et al., Oral administration of beta-1,3/1,6-glucan Macrogard (R) fails to enhance the mucosal immune response following oral F4 fimbrial immunisation in gnotobiotic pigs. Vet. Immunol. Immunopathol. 2010, 137, 291–297.

[53] Vetvicka, V., Vancikova, Z., Anti-stress action of several orally-given beta-glucans. Biomed. Pap. 2010, 154, 235–238.

[54] Baran, J., Allendorf, D. J., Hong, F., Ross, G. D., Oral beta-glucan adjuvant therapy converts nonprotective Th2 response to protective Th1 cell-mediated immune response in mammary tumor-bearing mice. Folia. Histochem. Cytobiol. 2007, 45, 107–114.

[55] Qi, C. J., Cai, Y. H., Gunn, L., Ding, C. L. et al., Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived beta-glucans. Blood 2011, 117, 6825–6836.

[56] Harnack, U., Eckert, K., Pecher, G., Beta-(1–3),(1–6)-D-glucan enhances the effect of low-dose cyclophosphamide treatment on A20 lymphoma in mice. Antican. Res. 2011, 31, 1169–1172.

[57] Harnack, U., Eckert, K., Fichtner, I., Pecher, G., Oral administration of a soluble 1–3, 1–6 beta-glucan during prophylactic survivin peptide vaccination diminishes growth of a B cell lymphoma in mice. Int. Immunopharmacol. 2009, 9, 1298–1303.

[58] Li, B., Cai, Y., Qi, C., Hansen, R. et al., Orally administered particulate beta-glucan modulates tumor-capturing dendritic cells and improves antitumor T-cell responses in cancer. Clin. Cancer Res. 2010, 16, 5153–5164.

[59] Hong, F., Yan, J., Baran, J. T., Allendorf, D. J. et al., Mechanism by which orally administered beta-1,3-glucans enhance tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 2004, 173, 797–806.

[60] Bayrak, O., Turgut, F., Karatas, O. F., Cimentepe, E. et al., Oral beta-glucan protects kidney against ischemia/reperfusion injury in rats. Am. J. Nephrol. 2008, 28, 190–196.

[61] Aarsaether, E., Straumbotn, E., Rosner, A., Busund, R., Oral beta-glucan reduces infarction size and improves regional contractile function in a porcine ischaemia/reperfusion model. Eur. J. Cardio-thorac. Surg. 2012, 41, 919–925.

[62] Vetvicka, V., Vetvickova, J., Effects of glucan on immunosuppressive actions of mercury. J. Medic. Food 2009, 12, 1098–1104.

[63] Sener, G., Eksioglu-Demiralp, E., Cetiner, M., Ercan, F. et al., Beta-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects. Eur. J. Pharmacol. 2006, 542, 170–178.

[64] Toklu, H. Z., Sehirli, A. O., Velioglu-Ogunc, A., Cetinel, S. et al., Acetaminophen-induced toxicity is prevented by beta-D-glucan treatment in mice. Eur. J. Pharmacol. 2006, 543, 133–140.

[65] Babicek, K., Cechova, I., Simon, R. R., Harwood, M. et al., Toxicological assessment of a particulate yeast (1,3/1,6)-beta-D-glucan in rats. Food Chem. Toxicol. 2007, 45, 1719–1730.

[66] Gebert, A., H.-J, R., Pabst, R., M cells in Peyer's patches of the intestine. Internat. Rev. Cytol.1996, 167, 91–159.

[67] Beier, R., Gebert, A., Kinetics of particle uptake in the domes of Peyer's patches. Am. J. Physiol. 1998, 275, G130–G137.

[68] Hunter, K. W., Gault, R. A., Berner, M. D., Preparation of microparticulate beta-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett. Appl. Microbiol. 2002, 35, 267–271.

[69] Rice, P. J., Adams, E. L., Ozment-Skelton, T., Gonzalez, A. J. et al., Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J. Pharmacol. Exp. Therap. 2005, 314, 1079–1086.

[70] Vetvicka, V., Dvorak, B., Vetvickova, J., Richter, J. et al., Orally administered marine (1–>3)-beta-D-glucan phycarine stimulates both humoral and cellular immunity. Internat. J. Biol. Macromol. 2007, 40, 291–298.

[71] Tabata, Y., Ikada, Y., Effect of the size and surface-charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 1988, 9, 356–362.

[72] Goodridge, H. S., Reyes, C. N., Becker, C. A., Katsumoto, T. R. et al., Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 2011, 472, U471–U541.

[73] Ishibashi, K., Miura, N. N., Adachi, Y., Ogura, N. et al., Relationship between the physical properties of Candida albicans cell well beta-glucan and activation of leukocytes in vitro. Int. Immunopharmacol. 2002, 2, 1109–1122.

[74] Winkler, P., Ghadimi, D., Schrezenmeir, J., Kraehenbuhl, J. P., Molecular and cellular basis of microflora-host interactions. J. Nutr. 2007, 137, 756s–772s.

[75] Gertsch, J., Viveros-Paredes, J. M., Taylor, P., Plant immunostimulants-scientific paradigm or myth? J. Ethnopharmacol. 2011, 136, 385–391.

[76] Terpstra, A. H. M., Differences between humans and mice in efficacy of the body fat lowering effect of conjugated linoleic acid: role of metabolic rate. J. Nutr. 2001, 131, 2067–2068.

[77] Samuelsen, Anne Berit C., Jürgen Schrezenmeir, and Svein H. Knutsen., Effects of orally administered yeast‐derived beta‐glucans: A review. Molecular nutrition & food research 58.1. 2014, 183-193.

[78] Danielson, Michael E., et al., Enzymatic method to measure β-1, 3-β-1, 6-glucan content in extracts and formulated products (GEM assay). Journal of agricultural and food chemistry 58.19. 2010, 10305-10308.

[79] Tsikitis, Vassiliki L., Jorge E. Albina, and Jonathan S. Reichner., ß-glucan affects leukocyte navigation in a complex chemotactic gradient. Surgery 136.2. 2004, 384-389.

[80] Yan, Jun, Daniel J. Allendorf, and Brian Brandley., Yeast whole glucan particle (WGP) β-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. 2005, 691-702.

[81] Allendorf, Daniel J., et al., C5a-mediated leukotriene B4-amplified neutrophil chemotaxis is essential in tumor immunotherapy facilitated by anti-tumor monoclonal antibody and β-glucan. The journal of Immunology 174.11. 2005, 7050-7056.

[82] Cramer, Daniel E., et al., β-Glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood 107.2. 2006, 835-840.

[83] Li, Bing, et al., Yeast β-glucan amplifies phagocyte killing of iC3b-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. The Journal of Immunology 177.3. 2006, 1661-1669.

[84] Lavigne, Liz M., Jorge E. Albina, and Jonathan S. Reichner., β-Glucan is a fungal determinant for adhesion-dependent human neutrophil functions. The Journal of Immunology 177.12. 2006, 8667-8675.

[85] Driscoll, Michael, et al., Therapeutic potential of various β-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer biology & therapy 8.3. 2009, 218-225.

[86] Bose, Nandita, et al., Differential regulation of oxidative burst by distinct β-glucan-binding receptors and signaling pathways in human peripheral blood mononuclear cells. Glycobiology. 2014, cwu005.

[87] Scalabrin, Deolinda, et al., Formula with docosahexaenoic acid, prebiotics, and beta-glucan supports respiratory and skin health in children (382.6). The FASEB Journal 28.1 Supplement. 2014, 382-6.

[88] Li, Fei, et al., Follow-up formula consumption in 3-to 4-year-olds and respiratory infections: an RCT. Pediatrics 133.6. 2014, e1533-e1540.

[89] Fuller R.J., et al., Yeast-Derived 1,3/1,6 Glucopolysaccharide to Prevent Upper Respiratory Tract Infection and Modulate Circulating Cytokines and Chemokines in Older Adults. University of Southampton School of Medicine. 2014.

[90] Harger-Domitrovich, Stephanie G., Joseph W. Domitrovich, and Brent C. Ruby., Effects of an Immunomodulating Supplement on Upper Respiratory Tract Infection Symptoms in Wildland Firefighters 2001. FACSM. 2008.

[91] Talbott, Shawn M., et al., β‐Glucan supplementation, allergy symptoms, and quality of life in self‐described ragweed allergy sufferers. Food Science & Nutrition 1.1. 2013, 90-101.

[92] Talbott, Shawn M., and Julie A. Talbott., Baker's yeast beta-glucan supplement reduces upper respiratory symptoms and improves mood state in stressed women. Journal of the American College of Nutrition 31.4. 2012, 295-300.

[93] Carpenter, K. C., et al., Baker's yeast β-glucan supplementation increases monocytes and cytokines post-exercise: implications for infection risk? British Journal of Nutrition 109.03. 2013, 478-486.

[94] McFarlin, Brian K., et al., Baker's yeast beta glucan supplementation increases salivary IgA and decreases cold/flu symptomatic days after intense exercise. Journal of dietary supplements 10.3. 2013, 171-183.

[95] Waszkiewicz-Robak, Bozena. Spent Brewer's yeast and beta-glucans isolated from them as diet components modifying blood lipid metabolism disturbed by an atherogenic Diet. INTECH Open Access Publisher, 2013.

[96] Amulic, Borko, Christel Cazalet, Garret L. Hayes, Kathleen D. Metzler, and Arturo Zychlinsky. "Neutrophil Function: From Mechanisms to Disease." Annual Review of Immunology Annu. Rev. Immunol. (2012): 459-89

[97] Scientific Opinion on the Safety of ‘yeast Beta-glucans’ as a Novel Food Ingredient. Parma, Italy: European Food Safety Authority EFSA, 2011

Contacto

Para información adicional

ventas@nupromic.com

 

Síguenos en redes sociales

LinkedIn Nupromic

Facebook Nupromic

Favoritos de NUPROMIC INC @Nupromic
Versión para imprimir Versión para imprimir | Mapa del sitio

NUPROMIC
Tel.: +52-312-690-45-98
Dirección: Av. De los Maestros 320-3. Col. La Armonía, Colima, Col., México.
Correo: contacto@nupromic.com

© Copyright NUPROMIC 2019, México.

Aviso Legal: Esta página utiliza cookies para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continúa navegando en ésta página, consideramos que acepta su uso en los términos indicados en nuestra Política de Privacidad.